Fast Overlapping Group Lasso
نویسندگان
چکیده
The group Lasso is an extension of the Lasso for feature selection on (predefined) non-overlapping groups of features. The non-overlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation, where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. We have performed empirical evaluations using the breast cancer gene expression data set, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithm.
منابع مشابه
Screening Rules for Overlapping Group Lasso
Recently, to solve large-scale lasso and group lasso problems, screening rules have been developed, the goal of which is to reduce the problem size by efficiently discarding zero coefficients using simple rules independently of the others. However, screening for overlapping group lasso remains an open challenge because the overlaps between groups make it infeasible to test each group independen...
متن کاملExclusive Feature Learning on Arbitrary Structures via `1,2-norm
Group LASSO is widely used to enforce the structural sparsity, which achieves the sparsity at the inter-group level. In this paper, we propose a new formulation called “exclusive group LASSO”, which brings out sparsity at intra-group level in the context of feature selection. The proposed exclusive group LASSO is applicable on any feature structures, regardless of their overlapping or non-overl...
متن کاملExclusive Feature Learning on Arbitrary Structures via \ell_{1, 2}-norm
Group LASSO is widely used to enforce the structural sparsity, which achieves the sparsity at the inter-group level. In this paper, we propose a new formulation called “exclusive group LASSO”, which brings out sparsity at intra-group level in the context of feature selection. The proposed exclusive group LASSO is applicable on any feature structures, regardless of their overlapping or non-overl...
متن کاملClassification with Sparse Overlapping Groups
Binary logistic regression with a sparsity constraint on the solution plays a vital role in many high dimensional machine learning applications. In some cases, the features can be grouped together, so that entire subsets of features can be selected or zeroed out. In many applications, however, this can be very restrictive. In this paper, we are interested in a less restrictive form of structure...
متن کاملLogistic Regression with Structured Sparsity
Binary logistic regression with a sparsity constraint on the solution plays a vital role in many high dimensional machine learning applications. In some cases, the features can be grouped together, so that entire subsets of features can be selected or zeroed out. In many applications, however, this can be very restrictive. In this paper, we are interested in a less restrictive form of structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1009.0306 شماره
صفحات -
تاریخ انتشار 2010